矩形的定义 矩形的含义,矩形的定义是怎样的

本文目录

矩形的定义 矩形的含义

1、矩形性质定理是数学中一个几何概念,有一个角是直角的平行四边形是矩形。矩形对边平行且相等,四个角都是直角,矩形对角线互相平分且相等。中国古算书中,将矩形田称为直田,也称矩形图形为直田。

2、长方形也称矩形,是特殊的平行四边形之一。即有一个角是直角的平行四边形称为长方形。

3、用两组对应相等的木条可以做一个活动的平行四边形木框。轻轻拉动一个点,不管怎么拉,它还是一个平行四边形。再次演示平行四边形的移动过程,当移动到一个角是直角时停止,我们得到一个长方形。

矩形的概念矩形的定义是什么

矩形(rectangle)是一种平面图形,矩形的四个角都是直角,同时矩形的对角线相等,而且矩形所在平面内任一点到其两对角线端点的距离的平方和相等。矩形的定义是什么?以下是我分享给大家的关于矩形的定义,欢迎大家前来阅读!

矩形的定义 在几何中,矩形的定义为四个内角相等的四边形,即是说所有内角均为直角。

从这个定义可以得出矩形两条相对的边等长,也就是说矩形是平行四边形。正方形是矩形的一个特例,它的四个边都是等长的。同时,正方形既是长方形,也是菱形。非正方形的矩形通常称之为oblong。

矩形的基本简介 矩形(rectangle)是一种平面图形,矩形的四个角都是直角,同时矩形的对角线相等,而且矩形所在平面内任一点到其两对角线端点的距离的平方和相等。

判定

1.一个角是直角的平行四边形是矩形。

2.对角线相等的平行四边形是矩形。

3.有三个内角是直角的四边形是矩形。

4.对角线相等且互相平分的四边形是矩形。

说明:长方形和正方形都是矩形。平行四边形的定义在矩形上仍然适用。

图形学

"矩形必须一组对边与x轴平行,另一组对边与y轴平行。不满足此条件的几何学矩形在计算机图形学上视作一般四边形。"在高等数学里只提矩形,所以也就没提长方形的长与宽。

矩形的详细释义 计算公式

面积:S=ab(注:a为长,b为宽)

周长:C=2(a+b)=2a+2b(注:a为长,b为宽)

外接圆

矩形矩形外接圆半径 R=矩形对角线的一半

性质

1.矩形的4个内角都是直角;

2.矩形的对角线相等且互相平分;

3.矩形所在平面内任一点到其两对角线端点的距离的平方和相等;

4.矩形既是轴对称图形,也是中心对称图形(对称轴是任何一组对边中点的连线),它至少有两条对称轴。

5.矩形具有平行四边形的所有性质

6.顺次连接矩形各边中点得到的四边形是菱形

黄金矩形

宽与长的比是(√5-1)/2(约为0.618)的矩形叫做黄金矩形。

黄金矩形给我们一协调、匀称的美感。世界各国许多著名的建筑,为取得最佳的视觉效果,都采用了黄金矩形的设计。如希腊的巴特农神庙等。

矩形的判定应用 例1:已知ABCD的对角线AC和BD相交于点O,△AOB是等边三角形,AB= 4 cm.求这个平行四边形的面积。

分析:首先根据△AOB是等边三角形及平行四边形对角线互相平分的性质判定出ABCD是矩形,再利用勾股定理计算边长,从而得到面积为

例2:已知:在ABCD中,M为BC中点,∠MAD=∠MDA.求证:四边形 ABCD是矩形.

分析:根据定义去证明一个角是直角,由△ABM≌DCM(SSS)即可实现。

例:3:已知:ABCD的四个内角平分线相交于点E,F,G,H.求证:EG=FH.

矩形的定义是什么

矩形的定义:

1、有一个角是直角的平行四边形是矩形。矩形是一种特殊的平行四边形,正方形是特殊的矩形。

2、有一个角是直角的平行四边形是矩形。

3、对角线相等的平行四边形是矩形。

4、有三个角是直角的四边形是矩形。

5、定理:经过证明,在同一平面内,任意两角是直角,任意一组对边相等的四边形是矩形。

6、对角线相等且互相平分的四边形是矩形。

矩形的定义是矩形的特征是

定义:

对角线相等的平行四边形是矩形

有一个角是直角的平行四边形叫做矩形.

三个角是直角的四边形是矩形

长方形和正方形都是矩形.

平行四边形的定义在矩形上仍然适用

特征:

1.矩形的4个角都是直角

矩形

2.矩形的对角线相等

3.矩形所在平面内任一点到其两对角线端点的距离的平方和相等

4.矩形既是轴对称图形,也是中心对称图形(对称轴是任何一组对边中点的连线),它有两条对称轴.

5.矩形具有平行四边形的所有性质

以上就是关于矩形的定义 矩形的含义,矩形的定义是怎样的的全部内容,以及矩形的定义 矩形的含义的相关内容,希望能够帮到您。

版权声明:本文来自用户投稿,不代表【千搜网】立场,本平台所发表的文章、图片属于原权利人所有,因客观原因,或会存在不当使用的情况,非恶意侵犯原权利人相关权益,敬请相关权利人谅解并与我们联系(邮箱:faedoony@foxmail.com)我们将及时处理,共同维护良好的网络创作环境。

(0)
上一篇 2024年01月31日 16:29
下一篇 2024年01月31日 16:34

相关推荐

  • 18K金:时尚与价值的完美结合

    在珠宝的世界里,18K金以其独特的魅力和实用性成为了众多消费者的心头好。那么,18K金究竟是什么?它有哪些特点和优势?今天,就让我们一起揭开18K金的神秘面纱,探索这一时尚与价值的完美结合体。18K金的定义18K金,顾名思义,是指黄金含量至少达到75%的合金。在珠宝行业中,金…

    综合百科 2024-03-27
  • 十八罗汉:佛教中的传奇守护者

    在佛教艺术的宝库中,十八罗汉以其独特的魅力和深厚的文化内涵,成为了信仰与艺术的完美结合。这些传奇的守护者,不仅是佛教信仰中的重要人物,也是中国传统文化中不可或缺的一部分。今天,就让我们一起走进十八罗汉的世界,探索他们的神秘面纱。十八罗汉的由来十八罗汉源自佛教传说,他们是释迦牟…

    综合百科 2024-03-27
  • 18元全球通套餐:性价比之选,你的通信好帮手

    在这个信息爆炸的时代,手机套餐的选择成为了我们日常生活中的一项重要决策。对于预算有限但又希望享受稳定通信服务的用户来说,18元全球通套餐无疑是一个极具吸引力的选择。今天,就让我们一起来深入了解一下这款性价比极高的通信套餐。18元全球通套餐概览18元全球通套餐,即移动4G飞享套…

    综合百科 2024-03-27
  • 自媒体写手如何打造100字自我介绍

    在自媒体的世界里,一个吸引人的自我介绍就像是一张名片,能够让读者对你留下深刻的印象。那么,如何用100字打造一个既精炼又充满个性的自我介绍呢?以下是一些实用的技巧和建议。首先,自我介绍应该突出个性特点。无论是幽默风趣还是深沉内敛,都应该通过简短的文字展现出来。例如,如果你是一个…

    综合百科 2024-03-27
  • 16型人格介绍:解锁自我,探索人际奥秘

    在探索人类性格的广阔天地中,MBTI(Myers-Briggs Type Indicator)测试以其独特的视角和深刻的洞察力,为我们提供了一种理解自我与他人的有效工具。今天,我们就来深入了解一下MBTI中的16型人格,帮助你更好地认识自己,理解他人,从而在人际交往和个人成长的道…

    综合百科 2024-03-27
  • 1664白啤:法式风情的精酿佳酿

    在炎炎夏日或是朋友聚会的欢乐时光,一瓶冰爽的啤酒总能让人心情愉悦。而在众多啤酒品牌中,1664白啤以其独特的法式风情和精酿工艺,成为了啤酒爱好者的新宠。今天,就让我们一起走进1664白啤的世界,探索这款啤酒的魅力所在。1664白啤的历史渊源1664白啤的历史可以追溯到1664…

    综合百科 2024-03-27
  • 自媒体写手如何撰写150字自我介绍

    在自媒体的世界里,一个吸引人的自我介绍就像是一张名片,能够让读者在第一时间对你产生兴趣。一个150字的自我介绍,虽然篇幅不长,但却需要精心设计,以展示你的个性、专业和风格。以下是一些撰写自我介绍的技巧和要点:突出个性特点首先,你需要在自我介绍中突出自己的个性特点。无论是幽默风…

    综合百科 2024-03-27
  • 150字的自我介绍:自媒体写手的风采

    在这个信息爆炸的时代,我作为一名自媒体写手,用笔尖记录时代的脉动,用心感受生活的点滴。我是那个在文字世界里自由翱翔的探险家,用独到的视角捕捉每一个瞬间,用真挚的情感触动每一颗心。我的风格,既有幽默风趣的轻松笔触,也有深入浅出的理性分析。我追求的不仅仅是阅读量,更是与读者心灵深处…

    综合百科 2024-03-27
  • 100字自我介绍范文:打造个人品牌,从简洁开始

    在当今快节奏的社会中,自我介绍已成为建立个人形象和品牌的关键步骤。无论是在职场、社交场合还是网络平台,一段精炼而富有个性的自我介绍都能让人留下深刻印象。今天,我们就来探讨如何撰写一段100字左右的自我介绍范文,帮助你在众多声音中脱颖而出。首先,自我介绍应当简洁明了,直击要点。在…

    综合百科 2024-03-27
  • 100字班级介绍:如何用简短的文字展现班级风采

    在校园生活中,班级是我们共同成长的空间,每个班级都有其独特的气质和精神面貌。如何用简短的100字来介绍自己的班级,使之既精炼又充满魅力呢?以下是一些写作技巧和实例,帮助你在自媒体平台上展现班级的风采。写作技巧突出特色:每个班级都有自己的特色,无论是学术氛围、体育精神还是艺…

    综合百科 2024-03-27